
JOURNAL OF AEROSPACE COMPUTING, INFORMATION, AND COMMUNICATION
Vol. 3, June 2006

Linear-State-Transition Protocols: Asynchronous Protocols
with Ease of Efficiency Evaluation

Yoshihiro Nakaminami∗ and Toshimitsu Masuzawa†

Osaka University, Japan

and

Ted Herman‡

University of Iowa, U.S.A

Distributed systems are commonly modeled by asynchronous models where no assump-
tion is made about process execution speed. The asynchronous model is preferable to the
synchronous one because the model reflects the fact that a distributed system consists of
heterogeneous computers and their performance varies with time depending on their loads.
However, the asynchrony of the system makes it difficult to evaluate efficiency (performance)
of distributed protocols. To diminish the difficulty, this paper introduces a class of distributed
protocols called linear-state-transition protocols (LST protocols) in the shared-state model
and shows that efficiency of the LST protocols in the asynchronous distributed model can
be derived from analysis of their synchronous execution where all processes are synchro-
nized in the lock-step fashion. This provides an effective method for evaluating efficiency of
the LST protocols in the asynchronous distributed model. The paper also demonstrates the
effectiveness of the method by applying it to the self-stabilizing alternator.

I. Introduction

A distributed system consists of processes connected by a communication network. In these days, many distributed
systems are realized because the Internet makes it possible to use a large number of processes. The features

that distributed systems potentially have are high performance processing, scalability and fault-tolerance. There are
many brilliant works for the features.1

The shared-state model is one of the most commonly used models for designing distributed systems. Shared-state
model allows a process to read states of its neighbors directly. As an execution model for the shared-state model,
an asynchronous model that has no assumption on speed of processes is usually used. The asynchronous model
is considered as a realistic model because it reflects properties of actual distributed systems: computers may have
different processing power, and processing speed may change with time depending on their loads.

Time complexity is an important measure for distributed systems. In the asynchronous model, however, there is no
assumption with process execution speed, it is impossible to estimate the time complexity. Therefore time complexity
is estimated with some assumptions about process execution speed. Step complexity is one of the simplest measures.
The step complexity is measured by the number of total actions that are executed in a distributed system. But the step
complexity does not consider concurrent execution of the actions and thus it is not fit to evaluate the time complexity

Received 1 September 2005; revision received 00 Month 2006; accepted for publication 11 April 2006. Copyright © 2006 by
the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. Copies of this paper may be made for personal
or internal use, on condition that the copier pay the $10.00 per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood
Drive, Danvers, MA 01923; include the code 1542-9423/04 $10.00 in correspondence with the CCC.∗ Ph. D. Student, Dept. of Information Science and Technology, Osaka Univ., 1-3, Machikaneyama-cho, Toyonaka-city, Osaka-
pref., Japan, 560-8531
† Professor, Dept. of Information Science and Technology, Osaka Univ., 1-3, Machikaneyama-cho, Toyonaka-city, Osaka-pref.,
Japan, 560-8531
‡ Associate Professor, Dept. of Computer Science, University of Iowa, Iowa City, Iowa, U.S.A., 52242

281

NAKAMINAMI, MASUZAWA, AND HERMAN

of distributed systems. Instead of the step complexity, round complexity is a commonly used measure for estimating
time complexity. A round is an ideal time unit that each process has a chance to execute actions at least once. The
round complexity is important estimation for the asynchronous model. However its estimation is generally hard
because of indeterministic features of the asynchronous model: the asynchrony causes various executions even for a
deterministic protocol, so it is hard to find the worst case execution.

On the other hand, analysis of the round complexity is easy in the synchronous model where all processes execute
their actions in the lock-step fashion: execution of a deterministic protocol is uniquely determined from the initial
configuration, and the uniqueness eases analysis of the round complexity.

In this paper we are interested in the following question: What conditions should a protocol satisfy in order to
simplify performance evaluation for asynchronous executions?

We start our investigation with the observation that there are some protocols in the literature on self-stabilization,
where the performance, measured in synchronous rounds, is the same as the performance measured in asynchronous
rounds. This is true even though the asynchronous executions are nondeterministic, and include configurations that
would not appear in a synchronous execution. We did not succeed to answer the general question in this paper,
but we do present a sufficient condition called “linear-state-transition”. The linear-state-transition protocols have
enough inherent determinism so that performance in an asynchronous execution is approximately the same as that
in the synchronous execution. One of our contributions is thus to facilitate analysis in the asynchronous model
essentially by reduction to analysis for the (simpler case of) synchronous model. We have identified several works
in the literature3–6,9 that are linear-state-transition protocols, demonstrating applicability of our results. In this paper,
we succeed in deriving new analysis of a synchronization protocol3 using these results.

The remainder of the paper is organized as follows. Section II defines the system model and its complexity
measures. Section III shows a gap between the step complexity and the round complexity. Section IV introduces the
linear-state-transition criterion for protocols that we use in later sections. Section V presents theorems that relate
synchronous and asynchronous executions of a linear-state-transition protocol and the section also discusses how
the theorems can be applied to evaluate efficiency of the protocols. In Section VI, we use the results of Section V to
analyze the alternator protocol.3

II. Model
A distributed system S = (P, L) consists of set P = {v0, v1, . . . , vn−1} of processes and set L of bidirectional

(communication) links. A link connects two distinct processes. When a link connects processes v and w, this link is
denoted by (v, w). We say w is a neighbor of v if (v, w) ∈ L.

Each process v is a state machine and its state transition is defined by guarded actions:

〈guardv〉 −→ 〈statementv〉

The guard 〈guardv〉 of process v is a boolean expression on its own state and its neighbors’ states. When the guard
is evaluated to be true, 〈statementv〉 is executed to change the state of v. This model is called the shared-state model.

A configuration (i.e., a global state) of a distributed system is specified by an n-tuple σ = (s0, s1, . . . , sn−1) where
si stands for the state of process vi . A process v is said to be enabled at a configuration σ when v has a guarded
action whose guard is true at σ . A process v is said to be disabled at σ when it is not enabled at σ .

Let σ = (s0, s1, . . . , sn−1) and σ ′ = (s ′
0, s

′
1, . . . , s

′
n−1) be configurations and Q be any set of processes. We denote

the transition from σ to σ ′ by σ
Q�→ σ ′, when σ changes to σ ′ by actions of every enabled process in Q. (All enabled

processes in Q make actions but no disabled processes in Q make actions.) Reading states and executing actions are
done atomically: each process that is included in Q and is enabled at σ reads its neighbors’ states at σ , and changes
its state by executing one of its enabled actions. The resultant state depends on its state at σ and the read states of the
neighbors. Notice that si = s ′

i holds for a process vi if vi �∈ Q or vi is disabled at σ . We sometimes simply denote
σ �→ σ ′ without specifying the set of processes Q.

A schedule is an infinite sequence Q = Q1, Q2, . . . of nonempty sets of processes. In this paper, we assume that
any schedule is weakly fair, that is, all processes appear infinitely often in any schedule. If an infinite sequence of

configurations E = σ0, σ1, σ2, . . . satisfies σj

Qj+1�→ σj+1 (j ≥ 0), then E is called an execution starting from σ0 by

282

NAKAMINAMI, MASUZAWA, AND HERMAN

schedule Q. For a process vi , the local history of vi in an execution E is the projection of E to process states of vi

with removal of the stuttering part.
A schedule specifies the order of processes that are activated to execute their guarded actions. In this paper, we

consider an asynchronous distributed system where we make no assumption on the speed of processes. This implies
that all weakly fair schedules are possible to occur. Among the schedules, we define the following two special
schedules.

Synchronous schedule: When a schedule Q = Q1, Q2, . . . satisfies Qj = P for each j (j ≥ 1), then we call Q
a synchronous schedule and we call the corresponding execution a synchronous execution.

Sequential schedule: When a schedule Q = Q1, Q2, . . . satisfies |Qj | = 1 for each j (j ≥ 1), then we call Q
a sequential schedule and we call the corresponding execution a sequential execution.

We consider schedules and executions to be infinite sequences. However sometimes, we consider finite parts
of schedules and executions, and call them partial schedules and partial executions. Partial schedules and partial
executions are defined as follows: A partial schedule is a finite sequence Q = Q1, Q2, . . . , Qm of nonempty sets

of processes. If a finite sequence of configurations E = σ0, σ1, σ2, . . . , σm satisfies σj

Qj+1�→ σj+1 (0 ≤ j ≤ m − 1),
then E is called a partial execution starting from σ0 by schedule Q.

To evaluate the time complexity of protocols, we introduce rounds for an execution E. Let E = σ0, σ1, σ2, . . .

be an execution by a schedule Q = Q1, Q2, The first round of E is defined to be the minimal partial execution
σ0, σ1, . . . , σk that satisfies P = ∪1≤j≤kQj . The second and later rounds of E are defined recursively for the execution
σk, σk+1, σk+2,

III. Step Complexity and Round Complexity
The step complexity is a measure commonly used to evaluate efficiency of asynchronous distributed systems. The

step complexity is defined to be the total sum of executed actions at all processes. The step complexity is simple,
however, does not consider concurrent execution of actions. Thus, it is not fit to evaluate the time complexity of
distributed systems.

The round complexity is also a popular measure to evaluate the time complexity of asynchronous distributed
systems. The round defined in the previous section can be considered as a time unit during which every process is
activated at least once.

In this section, we clarify the difference between the step complexity and the round complexity by comparing
them with an example: a self-stabilizing mutual exclusion on ring networks.10 Mutual exclusion is one of the most
fundamental problems in distributed systems. It requires that there is at most one token at any time in the system,
and each process gets a token infinitely often.

Self-stabilizing protocols are defined by two properties, convergence and closure. The convergence requires
that a self-stabilizing protocol eventually reaches a desired legitimate configuration. The closure requires that any
configuration after a legitimate configuration is also in the set of legitimate configurations.

The ring consists of n processes v0, v1, . . . , vn−1 and n links where (vi, v(i+1) mod n) (0 ≤ i ≤ n − 1). The state of
each process vi is represented by a variable qi that stores an integer in {0, 1, . . . , n}. Figure 1 presents the protocol.
Note that processes v1, v2, . . . , vn−1 have an identical action but v0 has a distinct one.

In the rest of this section, we evaluate the step complexity and the round complexity of the protocol shown in
Fig. 1. In this section, we consider only the synchronous schedule. Each process is considered to have a token when
it has an enabled action. One of the legitimate configurations is that all processes have an identical value, where only
process v0 is enabled and has a token.10

Fig. 1 Actions of the stabilizing mutual exclusion on a ring.

283

NAKAMINAMI, MASUZAWA, AND HERMAN

Fig. 2 Execution from σ0 by the synchronous schedule.

To clarify the difference between the step complexity and the round complexity, we consider two cases, the
convergence time and the token circulation time.

i) Convergence time: Convergence time is the time required to reach a legitimate configuration. We consider an
initial configuration σ0 where qi = i holds for each i (0 ≤ i ≤ n − 1). Note that all processes other than v0 are
enabled at σ0. Let E = σ0, σ1, σ2, . . . , σn−1 be the partial execution starting from σ0 by the synchronous schedule.

We can easily show by induction on j that each configuration σj (0 ≤ j ≤ n − 1) satisfies qi = 0 for each
i (0 ≤ i ≤ j) and qi = i − j for each i (j + 1 ≤ i ≤ n − 1) (Fig. 2). It is also clear that σn−1 is a legitimate
configuration.

Now we analyze the step and round complexities of the execution from the initial configuration σ0 to the legitimate
configuration σn−1 by the synchronous schedule. At each configuration σj (0 ≤ j ≤ n − 2), the number of enabled
processes is n − 1 − j . So the step complexity is

∑n−2
j=0(n − 1 − j) = n(n − 1)/2. On the other hand, the round

complexity is clearly n − 1.

Fig. 3 Execution from σ ′
0 by the synchronous schedule.

284

NAKAMINAMI, MASUZAWA, AND HERMAN

ii) Token circulation time: Let σ ′
0 be a configuration where qi = 0 holds for each i (0 ≤ i ≤ n − 1). The configu-

ration σ ′
0 is clearly legitimate. Let E′ = σ ′

0, σ
′
1, . . . , σn be the partial execution starting from σ ′

0 by the synchronous
schedule (Fig. 3).

We can see that all the configurations σ ′
0, σ

′
1, . . . , σ

′
n are legitimate and that only the process vj mod n is enabled

at σ ′
j (0 ≤ j ≤ n). In the sequel, we can consider the execution E′ as a token circulation along the ring: the token

starts the circulation from v0 and ends at v0.
Since only the process vj mod n is enabled at σ ′

j (0 ≤ j ≤ n), both the step complexity and the round complexity
for the token circulation (i.e., the partial execution E′) are clearly n.

Both of the above scenarios have the same round complexity O(n), but have different step complexities: one
is n(n − 1)/2 and the other is n. This implies that the round complexity cannot be easily derived from the step
complexity, even when the step complexity can be evaluated.

Notice that E′ can be also regarded as a partial execution starting from σ ′
0 by a partial schedule Q =

{v0}{v1}{v2} . . . {vn−1}. In such observation, the round complexity is 1 because Q includes all processes exactly
once. This shows that an execution may have different round complexities depending on the schedules.

IV. Linear-State-Transition Protocol
This section defines a class of protocols called linear-state-transition protocols, which are focused on in the

following sections.
A protocol is called a linear-state-transition protocol (LST protocol) if it satisfies the following conditions C1

and C2.
C1 (Linear-state-transition) For any configuration σ , each process has the same local history in all executions

starting from σ . (This condition implies that the local history of each process is uniquely determined by the
initial configuration σ .)

C2 (Non-interference)7 Let σ be any configuration and v be any process. If v is enabled at σ , then v remains
enabled until v executes an action. (This condition implies that an enabled process never becomes disabled by
actions of other processes.)

The condition C1 implies that the synchronous execution of an LST protocol is uniquely determined from the
initial configuration. The condition C1 also implies that each process behaves the same actions in all the execution,
while an LST protocol may have several executions even from the same initial configuration because of different
asynchronous schedules. The condition C2 implies that an LST protocol is somewhat insensitive to the order in
which process are activated.

Examples of LST protocols include the stabilizing alternator,3 the stabilizing agent traversal protocol,4 the
stabilizing pipelined PIF protocol5 and the synchronizers.6,9

As an example of LST protocols, we present a self-stabilizing α synchronizer.2 The protocol realizes syn-
chronization between neighboring processes. The action of α synchronizer is quite simple and is presented in
Fig. 4.

Now we show that the self-stabilizing α synchronizer is an LST protocol. It is clear that the condition C1
(linear-state-transition) is satisfied because the only possible action of process v is phasev := phasev + 1. Once
phasev ≤ phasew holds for a neighbor w of v, phasev ≤ phasew remains holding until v increments the value of
phasev . Thus, if a process v is enabled, v remains enabled until it executes its action. Therefore the condition C2
(Non-interference) holds.

Fig. 4 Self-stabilizing α synchronizer: an action of process v.

285

NAKAMINAMI, MASUZAWA, AND HERMAN

V. Efficiency Evaluation of LST Protocols
This section presents key properties of LST protocols and proposes a method based on the properties for analyzing

efficiency of LST protocols.

A. Key Properties of LST Protocols
The following theorem shows a key property of LST protocols. The key property forms a basis of the efficiency

evaluation method proposed in Section B.

Theorem 1. Let σ0 be any initial configuration. For an LST protocol, any action that is executed at round t in the
synchronous execution starting from σ0 is executed at round t or earlier in any execution starting from σ0.

Theorem 1 implies that the synchronous execution of an LST protocol is the slowest execution with respect to
the number of actions executed at each process. Thus, the number of rounds required until some specific actions
are executed in the synchronous execution can be the maximum number of rounds in all executions. Since the
synchronous execution of a deterministic protocol is uniquely determined from an initial configuration, analysis of
the round complexity of an LST protocol is much simplified by considering only the synchronous executions.

In the rest of this subsection, we prove Theorem 1. Theorem 1 is proved with the help of a special type of asyn-
chronous sequential executions called pseudo synchronous executions. A pseudo synchronous execution simulates
the synchronous execution in the sense that all configurations appearing in the synchronous execution also appear in
the same order in the pseudo synchronous execution starting from the same initial configuration (Lemma 1).

Definition 1. Let σ0 be any configuration. A pseudo synchronous execution starting from σ0 is an execution by a
sequential schedule Q = Q1Q2 · · · with each term Qi (i ≥ 1) being a partial sequential schedule such that:

• each process of P appears exactly once in Qi

• Let σ i−1 be the last configuration of the partial (pseudo synchronous) execution by the partial sequential
schedule Q = Q1Q2 · · · Qi−1. (For convenience, let σ 0 = σ0 if i = 1.) Let Enabled(σ i−1) be the set of enabled
processes at σ i−1 and Disabled(σ i−1) be the set of disabled processes at σ i−1 (i.e, Disabled(σ i−1) = P −
Enabled(σ i−1)). Then all processes in Disabled(σ i−1) appear before any process in Enabled(σ i−1) in Qi .

The schedule Q = Q1Q2 · · · is called a pseudo synchronous schedule.

To simulate the synchronous execution, only the processes enabled at the beginning of each round should execute
actions in the round. Processes disabled at the beginning of a round may become enabled in the round because of
other processes’ actions. To prevent such processes from executing actions in the round, processes disabled at the
beginning of the round are activated first.

In Definition 1, σ 0 is the initial configuration, and σ i (i ≥ 1) is the last configuration of the i th round. A pseudo
synchronous execution is not uniquely determined from the initial configuration σ0, but the configurations σ i (i ≥ 1)

are uniquely determined for an LST protocol. That is, all pseudo synchronous executions starting from the same
initial configuration have the same configuration at the end of each round. Concerning the configurations σ 0, σ 1, . . . ,

the following lemma holds.

Lemma 1. For an LST protocol, the subsequence of configurations σ0(= σ 0), σ 1, σ 2, . . . appearing in a pseudo
synchronous execution coincides with the synchronous execution.

Proof. Let σ0, σ1, σ2, . . . be the synchronous execution. We will show by induction on i that σ i = σi holds for each
i (i ≥ 0).
(Induction basis) It follows from the definition that σ 0 = σ0 holds.
(Inductive step) With assumption of σ i = σi , we prove σ i+1 = σi+1. The definition of the synchronous execution
implies that every enabled process at σ i executes a single action and no disabled process at σ i executes an action
between σ i and σ i+1.

Let Qi+1 = Q1, Q2, . . . , Qn be a partial pseudo synchronous schedule that leads from σ i to σ i+1. Recall from the
definition of the pseudo synchronous schedule that |Qi | = 1 holds for each i (1 ≤ i ≤ n), and thus, let Qi = {vi}.
In the partial pseudo synchronous schedule, there exists x (0 ≤ x < n) such that Disabled(σ i) = {v1, v2, . . . , vx} and

286

NAKAMINAMI, MASUZAWA, AND HERMAN

Enabled(σ i) = {vx+1, vx+2, . . . , vn} hold. Let σ be a configuration reached from σ i by applying the partial schedule
Q1, Q2, . . . , Qx . It follows from Disabled(σ i) = {v1, v2, . . . vx} that no process executes its action between σ i

and σ . Thus, σ = σ i holds and all the processes in Enabled(σ i) remains enabled at σ . The condition C2 guarantees
that every process in Enabled(σ i) executes a single action by applying the schedule Qx+1, . . . , Qn to σ . For the
resultant configuration σ i+1, σ i+1 = σi+1 holds from the condition C1. �

Based on the condition C1, we introduce the precedence relation < on the states of each process v.

Definition 2. Let σ0 be the initial configuration and s0
i be the initial state of process vi . From the condition C1, the

state transition of vi is uniquely determined from σ0 and let s0
i , s

1
i , s

2
i , . . . be the local history of vi (common to every

execution starting from σ0). For convenience, we assume without loss of generality that the states s0
i , s

1
i , s

2
i , . . . are

mutually distinct§ . Then, the precedence relation < on the states of vi is defined as follows: s
j

i < sk
i ⇐⇒ j < k.

The precedence relation ≤ on the process states is defined as follows: s
j

i ≤ sk
i ⇐⇒ j ≤ k.

We define the precedence relation on configurations from the precedence relation on process states.

Definition 3. For two configurations σ = (s0, s1, . . . , sn−1) and σ ′ = (s ′
0, s

′
1, . . . , s

′
n−1), the precedence relation <

on the configurations is defined as follows.

σ < σ ′ ⇐⇒ ∀i (1 ≤ i ≤ n) [si ≤ s ′
i] ∧ ∃j (1 ≤ j ≤ n) [sj < s ′

j]
The precedence relation ≤ on the configurations is defined as follows.

σ ≤ σ ′ ⇐⇒ ∀i (1 ≤ i ≤ n) [si ≤ s ′
i]

Lemma 2. For an LST protocol, let Eps be a pseudo synchronous execution starting from any configuration σ0 and
let σ be any configuration that appears in Eps . Let E be any execution starting from σ0 and let δ be any configuration
that appears in E. If σ < δ holds, there exists a partial execution Eσ,δ that starts from σ and reaches δ.

Proof. We say that configuration α is β-reachable when there exists a partial execution that starts from α and reaches
a configuration β. We say that configuration α is β-unreachable when α is not β-reachable. For contradiction, we
assume σ is δ-unreachable and σ < δ holds.

From the definition, the initial configuration σ0 is δ-reachable. Since configuration σ appearing in a pseudo
synchronous execution Eps is δ-unreachable, Eps has consecutive configurations γ and γ ′ (γ < γ ′) such that γ

is δ-reachable and γ ′ is δ-unreachable (Fig. 5). Let v be the process that executes an action between γ and γ ′.
Since γ is δ-reachable, there exists a partial execution, say Eγ = γ, ω1, ω2, . . . , ωm−1, ωm(= δ) from γ to δ. Let
Qγ = {v1}, {v2}, . . . , {vm} (vi ∈ P) be the partial sequential schedule for Eγ .

Obviously ω1 is δ-reachable and γ ′ is δ-unreachable. So ω1 is different from γ ′ and thus v �= v1. From the condition
C2, process v is enabled at ω1. Let ω′

1 be the configuration that is reached when process v executes its action at ω1.
Similarly, process v1 is enabled at γ ′. Let ω′′

1 be the configuration that is reached when process v1 executes its action
at γ ′. From the condition C1, ω′

1 = ω′′
1 holds (Fig. 5).

Since ω′
1 is reached from ω1 and process v2 is enabled at ω1, v2 is enabled at ω′

1 from the condition C2. By
repeating a similar argument, we can construct a partial sequential execution E′

γ = γ ′, ω′
1, ω

′
2, . . . , ω

′
m starting from

γ ′ by Qγ . We can see that action of process v changes configuration from ωi to ω′
i for each i (1 ≤ i ≤ m).

Since γ ′ is δ-unreachable, ω′
i is δ-unreachable. It follows for Qγ = {v1}, {v2}, . . . , {vm} that vi �= v (1 ≤ i ≤ m)

holds. Then, for σ = (s0, s1, . . . , sn−1) and δ = (s ′
0, s

′
1, . . . , s

′
n−1), sv > s ′

v holds. This contradicts the assumption
σ < δ. �

The following lemma implies that any pseudo synchronous execution is the slowest execution of an LST protocol
in the sense that the number of actions executed by each process is minimum at the end of each round.

§ The assumption can be validated by assigning a monotonously increasing value (e.g., a counter value) to each state.

287

NAKAMINAMI, MASUZAWA, AND HERMAN

Fig. 5 Proof of Lemma 2.

Lemma 3. Let σ0 be any initial configuration. For an LST protocol, any action that is executed at round t in a pseudo
synchronous execution starting from σ0 is executed at round t or earlier in any execution starting from σ0.

Proof. We prove the theorem by induction. For t = 1, the theorem obviously holds from the condition C2. Let σ t =
(s0, s1, . . . , sn−1) and σ t+1 = (s ′

0, s
′
1, . . . , s

′
n−1) be the configurations at the ends of rounds t and t + 1 in a pseudo

synchronous execution respectively. For any execution E, let δt = (r0, r1, . . . , rn−1) and δt+1 = (r ′
0, r

′
1, . . . , r

′
n−1)

be the configurations at the ends of rounds t and t + 1 respectively.
For induction, we show σ t+1 ≤ δt+1 under the assumption that σ t ≤ δt (i.e., si ≤ ri for each i (0 ≤ i ≤ n − 1)).

We consider the state of any process vi . If vi is disabled at configuration σ t (i.e., s ′
i = si), s ′

i ≤ r ′
i obviously holds.

In the case that si < ri holds, s ′
i ≤ r ′

i obviously holds since vi executes at most one action between σ t and σ t+1. Thus,
it is sufficient to show that process vi is enabled at δt when vi is enabled at σ t and si = ri holds. From Lemma 2,
σ t is δt -reachable since we assume σ t ≤ δt . Thus, from the condition C2, vi is enabled at δt since vi is enabled at σ t

and si = ri . Consequently, s ′
i ≤ r ′

i holds. �

From Lemma 1 and Lemma 3, Theorem 1 immediately follows.

B. A Method for Evaluating Efficiency of LST Protocols
Generally a distributed problem � specifies the possible initial configurations and the expected executions starting

from each of the initial configurations. A protocol for solving � is required that all of its possible executions are the
expected ones � specifies.

In the following, we introduce two theorems for evaluating time complexity of LST protocols, the counting
theorem and the reach theorem. In these theorems, we focus on some set of specified actions or some set of specified
configurations. These specified actions and configurations are determined according to the context of the problem.
Typical examples of such specified actions include the token passing actions in token circulation protocols and
the decide actions in the repetition of a wave algorithm.1 Typical examples of specified configurations include the
configurations with solutions in non-reactive problems (e.g., leader election and tree construction problems) and the
safe configurations2 in self-stabilizing protocols.

Theorem 2. (Counting theorem) For an LST protocol, if some specified actions are executed k times by the end of
round t in the synchronous execution, then the actions are executed k times or more by the end of round t in any
execution starting from the same configuration.

288

NAKAMINAMI, MASUZAWA, AND HERMAN

The counting theorem implies that an LST protocol makes the least progress in the synchronous execution. This
helps us to evaluate the round complexity until a specified action is executed: the round complexity of the synchronous
executions gives the worst-case round complexity.

The reach theorem is used to evaluate the round complexity of an LST protocol until it reaches one of the
specified configurations. We consider only the specified configurations satisfying the closure property: once the
protocol reaches one of these specified configurations, then all of the subsequent configurations are also among the
specified configurations. For such specified configurations, Theorem 1 implies the following: if an LST protocol
reaches a specified configuration by the end of round t in the synchronous execution, then it reaches a specified
configuration by the end of round t or earlier in any execution from the same initial configuration. Thus the worst-
case reach time of an LST protocol in asynchronous executions can be directly derived from the reach time of the
synchronous execution from the same initial configuration.

Theorem 3. (Reach theorem) Consider some specified configurations satisfying the closure property. For an LST
protocol, if the synchronous execution starting from any configuration reaches a specified configuration at the end of
round t , then any execution starting from any configuration reaches a specified configuration at the end of round t .

It is valuable to mention what impact the reach theorem makes especially on efficiency analysis of self-stabilizing
protocols. Self-stabilizing protocols are required to reach a safe configuration from any initial configuration. The
safe configurations satisfy the closure property and are defined depending on the problem definition and the self-
stabilizing protocol. Thus, the worst-case convergence time (i.e., the worst-case reach time to the safe configurations)
in asynchronous executions can be directly derived from the convergence time of the synchronous execution.

VI. Application for Stabilizing Alternator
In this section, we apply the method proposed in the previous section to analyze efficiency of an LST protocol.

We evaluate the performance of the stabilizing alternator proposed by Gouda and Haddix,3,8 which is an example
of the LST protocols. Notice that Gouda and Haddix3,8 did not show the performance of the alternator and we first
evaluate its performance using the properties of LST protocols.

A. Stabilizing Alternator
In this subsection, we briefly introduce the stabilizing alternator proposed by Gouda and Haddix.3

The alternator is an underlying protocol for protocol transformation: it transforms a protocol that works correctly
under any sequential schedule to a protocol for the same task that works under any schedule. The transformation is
important for the following reasons. Protocol design is much easier under the sequential schedules. In fact, many
self-stabilizing protocols have been proposed under the sequential schedules. But the sequential schedule is not
practical since real distributed systems allow several processes to execute actions simultaneously. Thus it is highly
desired to transform protocols for sequential schedules so that they can work under any schedules.

In the shared-state model, the action of each process is determined from the states of the process and its neigh-
bors. This implies that protocols designed under the sequential schedules correctly work under any schedule if no
neighboring processes execute actions simultaneously (i.e., local mutual exclusion). The alternator realizes the local
mutual exclusion.

The alternator is a self-stabilizing protocol: starting from any initial configuration, the system reaches a
configuration after which no neighboring processes execute specific actions (defined below) simultaneously.

Figure 6 shows a guarded action of process v. In the protocol, qv is a variable of process v that stores an integer
in {0, 1, . . . , 2d − 1}, Nv is a constant denoting the set of neighbors of v, and d is a constant denoting the length of
the longest simple cycle (if a distributed system has no cycle, then let d = 2).

Fig. 6 Stabilizing alternator: an action of process v

289

NAKAMINAMI, MASUZAWA, AND HERMAN

The following lemma holds for the alternator.

Lemma 4. [3] In any execution starting from an arbitrary initial configuration, the followings hold.
1. Each process v becomes enabled infinitely often (i.e., v updates qv infinitely often).
2. There exists a suffix of the execution that satisfies qv �= 2d − 1 or qw �= 2d − 1 at every configuration for

any neighboring processes v and w.

The stabilizing alternator is utilized in protocol transformation. Let A be a self-stabilizing protocol that works
correctly under any sequential schedule. Transformation from A to a self-stabilizing protocol A′ for the same task that
works under any schedule is realized as follows: each process v executes the action of the self-stabilizing alternator
and executes the actions of A concurrently only when variable qv is updated from 2d − 1 to 0.

Lemma 4 guarantees that any execution of protocol A′ has an infinite suffix where no neighboring processes
execute actions of A simultaneously. Since protocol A is a self-stabilizing protocol, A′ converges to its intended
behavior eventually.

B. Satisfaction of LST Conditions
In this subsection, we first show that the alternator is an LST protocol. To show that the alternator is an LST

protocol, we consider conditions C1 and C2. It is clear that C1 (linear-state-transition) is satisfied because the only
possible action of process v is qv := (qv + 1) mod 2d. Thus, it is sufficient to show that the alternator satisfies C2
(non-interference).

Lemma 5. In the alternator, once a process becomes enabled, then the process remains enabled until it executes
an action.

Proof. Letv be a process andσ be a configuration such thatv is enabled atσ .Without loss of generality, we assume that
qv = 0 at σ . Since process v is enabled at σ , each neighbor w of v satisfies (2 ≤ qw ≤ 2d − 1) ∨ (qw = 0 ∧ v < w).
For contradiction, assume that v becomes disabled before it executes its action. Let w be the process whose execution
of its action changes v to disabled. Two cases to consider are:

1. Case that qw = 0 ∧ v < w holds at σ : Since w cannot execute its action until v executes its action, w never
changes v to disabled.

2. Case that 2 ≤ qw ≤ 2d − 1 holds at σ : Process w can execute actions. But from the protocol, w satisfies
2 ≤ qw ≤ 2d − 1 after execution of its actions (w is disable when qw = 2d − 1 because qv = 0). Thus w

never changes v to disabled.
In each case, v remains enabled and it is contradiction. �

C. Performance Analysis
In this subsection, we analyze the performance of the alternator. Recall that the performance is measured by the

number of the specified actions executed in some number of rounds. We count the number of executions of the
statement qv := (qv + 1) mod 2d .

We consider the synchronous execution of the alternator and count the number of executions of the statement.
First we show that the alternator reaches an ideal configuration (defined below) in 2n rounds from any configuration.
Once the synchronous execution reaches the ideal configuration, each process makes an action at every round in
the synchronous execution. Thus, we can conclude that each process makes at least m actions by the end of the
(m + 2n)-th round.

We define an ideal configuration as follows: A configuration is ideal iff each process satisfies the following
condition:

∀w ∈ Nv[qv �= qw

∧ qv �= (qw + 1) mod 2d]

290

NAKAMINAMI, MASUZAWA, AND HERMAN

From the protocol in Fig. 6, we can see that all processes are enabled at any ideal configuration. In the synchronous
execution, each process increments its variable at any ideal configuration. So the resultant configuration in the
synchronous execution is also ideal. Therefore the following lemma holds:

Lemma 6. In the synchronous execution, each process of the alternator executes its action at every round once the
alternator reaches an ideal configuration.

To evaluate the number of rounds required to reach an ideal configuration, we define a directed graph G.σ for a
configuration σ . The graph G.σ was originally defined in3 for the correctness proof.

Definition 4. For a distributed system S = (P, L) and a configuration σ , a directed graph G.σ = (P, L′) is defined
as follows:

L′ = {(v, w) ∈ L | (qv = qw ∧ v > w)

∨ (qv = (qw − 1) mod 2d) holds at configuration σ }
(The vertex set of G.σ is P . We do not distinguish the vertices from the processes. So we simply call a vertex in

G.σ a process.)

From the definition of G.σ and the protocol of the alternator, process v is enabled at configuration σ iff v has no
outgoing edge in G.σ . The following lemma guarantees that there exists an enabled process at any configuration.

Lemma 7. [3] For any configuration σ , G.σ has no directed cycle.

For G.σ , we define a head process as follows:

Definition 5. For a directed graph G.σ , a head process is a process that has no outgoing edge but has at least one
incoming edge.

Lemma 7 guarantees that there is at least one head process at any configuration such that L′ �= ∅. From the
definition, if v is a head process in G.σ , v is enabled at σ . Concerning each of the two conditions qv = qw ∧ v > w

and qv = (qw − 1) mod 2d for edges of G.σ , we introduce the following two observations.

Observation 1. Let σi−2, σi−1 and σi be consecutive configurations in the synchronous execution of the alternator
and v be a head process at σi . If v is also a head process at σi−1, the followings hold:

• There exits a neighbor u of v such that (qu = qv) ∧ (u > v) holds at σi−1. So u has an outgoing edge (u, v)

at σi−1 and σi .
• v is not a head process at σi−2.

Observation 2. Let σi−1 and σi be consecutive configurations in the synchronous execution of the alternator and v be
a head process at σi . If v is not a head process at σi−1, v has an outgoing edge (v, w) such that qv = (qw − 1) mod 2d

holds and w is a head process at σi−1.

We define an inheritance list for the following discussion. Intuitively, an inheritance list consists of a history of
head processes. Note that an inheritance list is defined for each head process at each configuration.

Definition 6. Let σ0, σ1, σ2, . . . be the synchronous execution starting from σ0. We define an inheritance list for each
head process v in G.σi as follows.

• The inheritance list of v at the initial configuration σ0 is a list 〈v〉.
• If v is a head process in G.σi−1(i ≥ 1), the inheritance list of v at σi is that of v at σi−1.
• If v has an outgoing edge in G.σi−1, let w be any process such that edge (v, w) exists in G.σi−1. The inheritance

list of v at σi is obtained by appending v to the inheritance list of w in G.σi−1.
We define the length of an inheritance list to be the number of processes contained in the list.

291

NAKAMINAMI, MASUZAWA, AND HERMAN

From the definition of the inheritance list and Observation 1 and 2, the following lemma holds.

Lemma 8. Let σ0, σ1, σ2, . . . be a synchronous execution of the alternator and �i be the minimum length of the
inheritance lists existing at σi . Then, the followings hold.

• �0, �1, �2, . . . is monotonically non-decreasing.
• �i < �i+2 holds for each i (i ≥ 0).

Now we analyze how many steps are needed to reach an ideal configuration.

Lemma 9. In the synchronous execution from any initial configuration, the alternator reaches an ideal configuration
within 2n rounds.

Proof. First, we show that any process appears in any inheritance list at most once.
For contradiction, we assume that a process v appears twice in an inheritance list. Let 〈v =

v0, v1, v2, . . . , vm−1, vm = v〉 (m ≤ d) be a part of the inheritance list, and without loss of generality, assume
vi �= vj (0 ≤ i < j ≤ m − 1). Notice that the partial list forms a simple cycle. This implies that the inheritance
list is inherited along the cycle.

Let σ i be the configuration where process vi becomes a head process inheriting the inheritance list from vi−1.
From Observation 1 and 2, there exists the edge (vi+1, vi) in G.σv . Thus the following holds at σ i :

(qvi
= qvi+1 ∧ vi < vi+1) (1)

∨(qvi
= (qvi+1 + 1) mod 2d) (2)

We observe the execution from σ i to σ i+1 in the two cases: one satisfying (1) and the other satisfying (2). For the
both cases, assume that qvi

= λ holds at σ i .
1. Case that (1) is satisfied: During the execution from σ i to σ i+1, exactly two rounds are spent. At σ i+1,

qvi+1 = λ holds.
2. Case that (2) is satisfied: For the execution from σ i to σ i+1, exactly one round is spent. At σ i+1, qvi+1 = λ − 1

holds.
Now we derive contradiction. Without loss of generality, we can assume qv0 = 0 holds at σ 0.
Let x be the number of process pairs (vi, vi+1) among {(vi, vi+1) | 0 ≤ i ≤ m − 2} that satisfy (1) at σ i . Then,

the number of process pairs (vi, vi+1) among {(vi, vi+1) | 0 ≤ i ≤ m − 2} that satisfy (2) at σ i is m − x − 1.
From the above observations on the number of rounds spent from σ i to σ i+1, 2x + (m − x − 1) = x + m − 1

rounds are spent from σ 0 to σm−1 and, thus, qv ≤ x + m − 1 holds at σm−1. This is because qv = 0 holds at σ 0 and
v can increment qv by at most one at each round.

On the other hand, from the above observation on the states of vi and vi+1, qvm−1 = 2d − (m − x − 1) holds at
σm−1. Because of m ≤ d , (qvm−1 − qv) mod 2d ≥ 2d − 2m + 2 ≥ 2 holds at σm−1, and thus edge (v, vm−1) does not
exist in G.σvm−1 (Neither formula (1) nor (2) are satisfied). Therefore v cannot inherit the inheritance list from vm−1.
This contradicts to the fact that vm = v.

Since no process appears in any inheritance list twice or more, the length of any inheritance list is at most n.
From Lemma 8, the synchronous execution starting from any configuration reaches a configuration within 2n rounds
where there is no inheritance list. In that configuration, there is no head process and the configuration is ideal. �

Lemma 6 and 9 lead the following theorem.

Theorem 4. Let m be a positive integer. In any synchronous execution, each process of the alternator executes more
than m actions within 2n + m rounds.

Since the alternator is an LST protocol, we obtain the following theorem from Theorem 1 and Theorem 4.

Theorem 5. Let m be a positive integer. In any execution, each process of the alternator executes more than m

actions within 2n + m rounds.

292

NAKAMINAMI, MASUZAWA, AND HERMAN

VII. Conclusion
We presented a new method to analyze efficiency of asynchronous protocols by observing their synchronous

executions. The method is not universal and LST protocols are defined as a class of protocols to which the proposed
method can be applied. It is worthwhile to say that several existing self-stabilizing protocols belong to the class. To
show the effectiveness of the method, we applied the method to analyze efficiency of the alternator, a well-known
self-stabilizing protocol for synchronization.

This paper proves the possibility of a new approach to efficiency analysis of asynchronous protocols. One of our
future works is to extend the protocol class to which the proposed method can be applied and to extend the method
so that it can be applied to a wider class of protocols. We believe that the proposed method or its variation can
be applied to a wider class of protocols. The intuition behind the claim is that processes are least activated in the
synchronous execution. Thus, the proposed method can be applied to any protocol with the property such that more
activation guarantees more progress. For such protocols, the round complexity in the synchronous executions give
us the worst-case round complexity in all executions.

Acknowledgments
This work was supported in part by JSPS, Grants-in-Aid for Scientific Research ((B)15300017), MIC, Strate-

gic Information and Communications R&D Promotion Programme, and “The 21st Century Center of Excellence
Program” of the Ministry of Education, Culture, Sports, Science and Technology, Japan.

References
1Tel, G., “Introduction to Distributed Algorithms,” 2nd ed., Cambridge University Press, Cambridge, 2000.
2Dolev, S., “Self-stabilization,” The MIT Press, Cambridge, 2000.
3Gouda, M. G., and Haddix, F., “The Alternator,” Proceedings of the Workshop on Self-Stabilizing System, IEEE Computer

Society, Washington, 1999, pp. 48–53.
4Herman, T., and Masuzawa, T., “Self-StabilizingAgent Traversal,” Proceedings of the Workshop on Self-Stabilizing Systems,

Springer, New York, 2001, pp. 152–166.
5Kondou, D., Masuda, H., and Masuzawa, T., “A Self-Stabilizing Protocol for Pipelined PIF,” Proceedings of the International

Conference on Distributed Computing Systems, IEEE Computer Society, Washington, 2002, pp. 181–190.
6Johnen, C., Alima, L. O., Datta, A. K., and Tixeuil, S., “Self-Stabilizing Neighborhood Synchronizer in Tree Networks,”

Proceedings of the International Conference on Distributed Computing Systems, IEEE Computer Society, Washington, 1999,
pp. 487–494.

7Brown, G. M., Gouda, M. G., and Wu, C. L., “A Self-Stabilizing Token System,” Proceedings of the Hawaii International
Conference on System Sciences, IEEE Computer Society, Washington, 1987, pp. 218–223.

8Gouda, M. G., and Haddix, F., “The Linear Alternator,” Proceedings of the Workshop on Self-Stabilizing System, Carleston
University Press, Montreal, 1997, pp. 31–47.

9Awerbuch, B., “Complexity of Network Synchronization,” Journal of the ACM, Vol. 32, No. 4, 1985, pp. 804–823.
10Dijkstra, E. W., “Self-Stabilizing Systems in spite of Distributed Control,” Communications of the ACM, Vol. 17, No. 11,

1974, pp. 643–644.

Shlomi Dolev
Associate Editor

293

